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A numerical investigation of the influence of grazing flow on the Rayleigh conductivity K
R

of an
aperture in a thin rigid wall is made. The Mach number is sufficiently small for the local motion
near the aperture to be regarded as incompressible, and the Reynolds number is taken to be
large enough for the aperture shear layer to be modelled by a vortex sheet. The vortex sheet is
assumed to be linearly perturbed from its equilibrium position by a small amplitude, time-
harmonic pressure, and K

R
is determined from the ratio of the resulting aperture volume flux to

the applied pressure. The frequency dependence of K
R

is computed for a variety of aperture
shapes for both one-sided and two-sided flows. For apertures of equal maximum streamwise
dimension in one-sided flow, the Strouhal number range within which perturbation energy is
extracted from the mean flow [whereIm(K

R
)'0] is found to be effectively independent of the

aperture shape. The frequency of the first ‘‘operating stage’’ of self-sustained (unforced) oscilla-
tions of the aperture shear layer lies approximately in the center of this range, and is the
minimum frequency at which narrow band sound is generated by nominally steady flow over
the aperture. The numerical predictions are shown to satisfy the reverse flow reciprocal
theorem, according to which K

R
is unchanged when the mean flow directions on both sides of

the wall are reversed (when vortex shedding occurs from the ‘‘opposite’’ edge of the aperture).
( 1998 Academic Press Limited
1. INTRODUCTION

A TIME HARMONIC PRESSURE LOAD (p`
0
!p~

0
)e~*ut is applied across an aperture in a thin rigid

wall, which coincides with the plane x
2
"0 of the rectangular coordinate system (x

1
, x

2
, x

3
)

(see Figure 1). The pressures p`
0
!p~

0
are uniform, respectively, in xj0, and produce

a volume flow through aperture in the positive x
2
-direction equal to Qe~*ut.

The Rayleigh conductivity is defined in terms of these quantities by the ratio (Rayleigh
1945).
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, (1.1)

where o
0

is the mean fluid density, which is assumed to be constant. Conductivity has the
dimensions of length; for an ideal, incompressible fluid (in the absence of mean flow) its
value is entirely determined by the geometric shape of the aperture, being equal to 2R for
a circular aperture of radius R, and approximately equal to 2]J(aperture area/n) for an
arbitrary, nonelongated aperture. In a real fluid, K

R
is generally a complex function of the
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Figure 1. Grazing flow past a wall aperture.
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frequency u, and energy of the applied pressure field (an incident sound wave, for example)
is dissipated in the aperture at a rate
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where the asterisk denotes the complex conjugate (Pierce 1989). The damping is negative
(%(0) ifImMK

R
(u)N'0 (for u'0), which can happen in the presence of mean flow over

one or both sides of the wall. The forced motion in the aperture then grows at the expense of
mean flow kinetic energy (Howe et al. 1996) via coupling facilitated by unsteady vortex
shedding from the aperture leading edge. The phase of the interaction of this vorticity with
the trailing edge (after convection across the aperture) determines whether or not perturba-
tion energy is extracted from or ceded to the mean flow.

The negative damping of forced motion in the presence of flow is related to the instability
of the mean shear layer in the aperture (Lamb 1932) and to the possible occurrence of
self-sustained oscillations that produce narrow band sound (Rossiter 1964; Rockwell 1983;
Blake & Powell 1986; Howe et al. 1996). Such oscillations are maintained by feedback,
involving the periodic generation of pressure ‘‘waves’’ at the trailing edge by interaction
with shed vorticity, which triggers the cyclic formation of new vorticity at the leading edge.
The oscillations are reinforced and sustained for a set of discrete value of the Strouhal
number based on the streamwise length of the aperture and the mean flow velocity (Powell
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1961; Rossiter 1964; Blake & Powell 1986). A quantitative understanding of the feedback
mechanism is desirable because of its importance in a diverse range of physical systems
including, for example, perforated baffles in heat exchangers, depressions in submarine and
ship hulls, computer boards with closely spaced chip carriers, aircraft control surfaces and
fuselage openings, and flow-through resonators of automobile mufflers.

To obtain a complete picture of the motion produced by the applied pressure, or of the
frequency and amplitude of the self-sustaining oscillations, it is necessary to solve the
nonlinear Navier—Stokes equations. However, an accurate first approximation to the forced
motion and to the frequencies of self-sustained oscillations is furnished by a linearized
treatment of the shear layer motion (Howe 1997a). This is because both the feedback and
nonresonant energy transfers are governed primarily by the convection speed of vorticity
across the aperture, which experiment shows to be essentially independent of the amplitude
of the shear layer motion (Powell 1961; Holger, et al. 1977; Rockwell 1983; Blake & Powell
1986).

Approximations of this kind have been considered by Howe (1981a, b) for slot-type
apertures of very large aspect ratio. The Reynolds number was taken to be sufficiently large
that turbulence-free mean streams over the wall could be regarded as uniform, and the mean
shear layer in the aperture was modelled by a vortex sheet that is linearly disturbed from its
mean position. The same method was applied by Scott (1995) [see also Howe et al. (1996)]
to a circular aperture, and by Howe (1997a, c) to rectangular apertures of arbitrary aspect
ratio. The mean flow Mach number was assumed to be small enough for the aperture
motion to be regarded as incompressible. Viscosity was ignored, except for its role
in shedding vorticity from the leading edge of the aperture, which was incorporated by
application of the Kutta condition. Howe (1997a) showed that linear theory predicts
that K

R
(u) has simple poles in Im u'0, and that the real part of the complex frequency

at a pole corresponds to the frequency of an ‘‘operating stage’’ of the self-sustained
oscillations.

In this paper, the numerical method of Scott (1995) is extended to determine the effect of
shape on the conductivity of an aperture in a thin wall in the presence of grazing flow.
Detailed comparisons are made of the conductivities for shapes including the circle, square,
triangle, ‘‘cross’’, and a square whose leading or trailing edge has triangular serrations
(‘‘crown’’). When the Strouhal number, u¸/º, is defined in terms of the maximum stream-
wise dimension 2¸ of the aperture and a mean flow velocity º, it is shown that aperture
shape has effectively no influence on the Strouhal number ranges in which forced oscilla-
tions are unstable [i.e., where %(u) of equation (1.2) is negative]. According to Howe (1997c)
this indicates that the minimum Strouhal number of self-sustained oscillations (i.e., of the
first operating stage) does not vary significantly with geometry. The calculations also
furnish direct numerical confirmation of reverse flow reciprocity (Howe et al. 1996), namely,
that the value of K

R
(u) is unchanged when the direction of the mean flow is reversed. This

remarkable theorem implies, for example, that the conductivity of a square aperture with
a serrated leading edge is unchanged when the flow is reversed, such that shed vorticity from
a straight leading edge now impinges on the serrations. This result could be important in
assessing the efficiency of ‘‘spoilers’’ intended to reduce the coherence of sound generated by
vortex shedding.

The numerical problem is formulated in Section 2, and applied in Section 3 to determine
the conductivities of apertures of various shapes in the presence of mean flow over one or
both sides of the wall. A comparison is also made with the approximate theory of Howe
(1997a). Reverse flow reciprocity is discussed in Section 4.
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2. THE GOVERNING EQUATIONS

2.1. EQUATION OF MOTION OF THE VORTEX SHEET

The motion on either side of the aperture induced by the perturbed motion of the vortex
sheet is regarded as incompressible and irrotational, and is expressed in terms of velocity
potentials '$, respectively, in the regions x

2
j0 ‘‘above’’ and ‘‘below’’ the wall. The

potentials satisfy the Laplace equation

+2'$

"0, x
2
j0, (2.3)

and the associated pressure fluctuations p$ are given by the linearized Euler equation in the
form
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The equation of motion of the vortex sheet is obtained by equating the net pressures on
opposite sides at the undisturbed position of the sheet, i.e.,
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where the field point (x
1
, 0, x

3
) lies within the aperture.

The solution of the Laplace equation (2.3) can be written as
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where the normal derivatives L'$/Ly
2
are evaluated on y

2
"$0 (Hildebrand 1976). These

derivatives are related to the displacement f of the vortex sheet (in the y
2

direction) by
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which permits equation (2.6) to be cast in the form
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where the integration is now restricted to the aperture opening S.
This equation is simplified by introducing the nondimensional notation

X"x/¸, Y"y/¸, (2.9)
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fo
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0
)
, (2.10, 2.11)

where p is the Strouhal number and 2¸ is the maximum streamwise length of the aperture.
By integrating equation (2.8) with respect to the second-order differential operator in x

1
on

the right-hand side, we can then write

P
S

Z (½
1
, ½

3
)

DX!Y D
d½

1
d½

3
"1#a(X

3
)e*p1X1#b (X

3
)e*p2X1, X

2
"0. (2.12)



CONDUCTIVITY OF WALL APERTURES IN GRAZING FLOW 339
Here, p
1,2

are the nondimensional Kelvin—Helmholtz wave numbers (Lamb 1932):

p
1
"

u¸(1#i)

º`#iº~
, p

2
"

u¸ (1!i)

º`!iº~
. (2.13)

a(X
3
) and b (X

3
) are ‘‘constants’’ of integration that depend on the spanwise coordinate X

3
.

They may be interpreted as the amplitudes of instability waves of wave numbers p
1,2

propagating across the aperture, their values being fixed by application of the Kutta
condition at the leading edge (Scott 1995; Howe et al. 1996).

When the mean velocities are the same on both sides of the wall (º`"º~) the wave
numbers p

1
and p

2
are both equal to p, and the right-hand side of equation (2.12) may be

replaced by

1#a (X
3
)e*pX1#b (X

3
)X

1
e*pX1.

2.2. THE NUMERICAL PROCEDURE

Equation (2.12) is solved for the nondimensional displacement Z by introducing the
Cartesian grid shown schematically in Figure 2 and discretizing the integration over the
aperture. The displacement Z(½

1
, ½

3
) is taken to be constant and equal to Z

ij
on the grid

cell centred on (½
1i

, ½
3j

), but the kernel function 1/ DX!Y D is integrated analytically. The
Kutta condition is imposed by setting Z"0 on the first two grid cells in each grid row of
constant ½

3
(indicated in the figure by the asterisks), i.e., by demanding that Z

1j
"Z

2j
"0;

this is equivalent to requiring that the displacement and streamwise derivative of the vortex
sheet vanish at the aperture leading edge. When this is done, Z

1j
and Z

2j
may be discarded

from the discretized equation of motion and their respective roles in the vector of unknowns
assumed by the corresponding instability wave amplitudes a (½

3j
) and b (½

3j
). The equation
Figure 2. Quadrature grid used to solve the integral equation; asterisks denote the elements used to satisfy the
Kutta condition.
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is then solved for the Z
ij

by collocation, by requiring it to be satisfied at each lattice point of
the grid.

Definition (1.1) and the solution array Z
ij

then determine the Rayleigh conductivity by
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Z
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where ¼
ij

denotes the area of the grid element centred on (½
1i

, ½
3j

).

3. NUMERICAL RESULTS

The set of aperture shapes considered in this investigation is illustrated in Figure 3, and
includes the circle, square, cross, two different forward (upstream pointing) and backward
(downstream pointing) facing triangles, and a ‘‘crown’’ (square with triangular serrated
leading or trailing edge). For each aperture, the conductivity is calculated in the normalized
form

K
R
(u)/2¸"!!i*,

for both one-sided flow (where º~"0), and for two-sided flow when º`"º~.
The circular aperture was treated by Scott (1995), and his results have been used as one

method to validate the integration procedure. Chanaud (1994) discussed the cross-shaped
Figure 3. Aperture cross-sections studied: (a) circle; (b) square; (c) cross; (d) forward pointing triangle; (e)
backward pointing triangle; (f ) smaller forward pointing triangle; (g) smaller backward pointing triangle; (h) crown.



Figure 4. Effect of single precision versus double-precision numerical calculations.

Figure 5. Dependence of Rayleigh conductivity calculation on grid resolution. One-sided grazing flow past
a square aperture.
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Figure 6. Dependence of Rayleigh conductivity calculation on grid resolution. Two-sided grazing flow past
a square aperture.
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aperture in the absence of flow. The ‘‘crown’’ is examined because of its relevance to
applications in which it is desirable to create incoherent streams of vorticity by shedding
from a serrated edge. The computations are performed in single precision using a square
mesh discretization of equation (2.12). The validity of using single precision was tested by
calculating the conductivity for two-sided flow past a square aperture using both single and
double precision and comparing the results. The absolute difference between the real part of
the conductivity from the two calculations and the absolute difference between the imagi-
nary part from the two calculations are plotted in Figure 4. The maximum difference is
7]10~4 and the average absolute difference is approximately 2]10~4. As this difference is
so small, there is no loss of information when performing the calculation using single
precision.

The size of the square mesh elements is set by choosing the number of mesh elements
stretching between the leading and trailing edges along the centreline of the aperture.
Figures 5 and 6 show the effect of increasing the mesh density on the calculations of the
conductivity for one and two sided grazing flow past a square aperture. (When the number
of elements increases from 30 to 60, this decreases the grid element nondimensional area
from 4)4]10~3 to 1)1]10~3.) In these figures the calculated real and imaginary compo-
nents, ! and *, of the conductivities for one-sided and two-sided flow are plotted against
Strouhal number p"u¸/º. Figure 5 shows that, for the Strouhal numbers of interest in
the one-sided flow case, the numerical results become completely grid independent at a grid
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corresponding to 50 mesh elements in the streamwise direction. The two-sided flow case,
which can be calculated to a higher Strouhal number, is grid independent for Strouhal
numbers less than 10 when the grid has 60 elements in the streamwise direction.

For the cases of both one-sided and two-sided flow, the difference between the discretiz-
ations of 40, 50 and 60 elements are very small. Past a Strouhal number of 10, a grid of more
than 70 elements must be used as the finer grids shift the results for the higher Strouhal
number of the left slightly. Because our objective is to compare the conductivity for several
aperture shapes, we have used a discretization of 40. The small phase shift that exists at the
higher Strouhal numbers will be the same for all of the calculations and was a small
trade-off for a large speed-up computationally. If a discretization higher than 40 was used
for a specific case, it will be noted.

3.1. ONE-SIDED MEAN FLOW

The real and imaginary components, ! and *, of the conductivities for one-sided flow past
the different aperture shapes are plotted against Strouhal number p in Figure 7. All of these
plots are qualitatively the same. In particular, *'0 at low frequencies, so that forced
motion of the aperture at such frequencies is always damped [see equation (1.2)], the energy
of the applied pressure force (produced by an incident sound wave, for example) being lost
to the mean flow. The damping is negative (*(0) over a band of higher frequencies,
wherein the mean flow releases kinetic energy when shed vorticity interacts with the
aperture trailing edge. In this case there would be a net gain in acoustic energy when the
shear layer is excited by sound. By invoking function theoretic arguments it can be shown
(Howe 1997c) that K

R
(u) has a simple pole at a complex frequency in the upper half-plane

whose real part is approximately equal to the real frequency at which *(u) is a minimum.
The real part of the frequency at this pole corresponds to the Strouhal number of the first
operating stage of self-sustained oscillations of the aperture shear layer (Howe 1997a). It is
only weakly dependent on aperture shape, since all the minima in Figure 7 lie within the
interval 2)5(u¸/º(3)2. In particular, the conductivity of the square aperture with
a serrated leading edge (the ‘‘crown’’) is practically the same as that for the straight-edged
square. A comparison of the conductivities for the forward and backward facing triangles
indicates that K

R
(u) is unchanged when the flow direction is reversed. This reverse flow

reciprocity is further discussed, below. The calculation of the conductivity of the smaller
triangle required a mesh with 100 elements in the streamwise direction.

In the absence of flow, Rayleigh (1945) showed that K
R
JA+constant, where A is the

aperture area. The result of normalizing K
R
(u) in the same way in the presence of one-sided

flow is shown in Figures 8 and 9.

3.2. UNIFORM TWO-SIDED MEAN FLOW, º`"º~

Figure 10 shows the calculated frequency dependency of ! and * when the mean flow speed
is the mean on both sides and equal to º. The quasi-periodic behavior of these functions
confirms the earlier prediction of Scott (1995) for the circle. In this case, however, the
aperture motions are only conditionally unstable, in the sense that an incident perturbation
will grow by extracting energy from the mean flow provided *(0, but there are no poles in
Im (u)'0, so that self-sustaining oscillations are not possible, at least in the ideal limit of
a vanishingly thin wall (Howe 1997c). The minima of * occur at roughly the same values



Figure 7. The Rayleigh conductivity for one-sided grazing flow past aperture with shapes: circle, square, cross,
forward triangle, backward triangle, small forward triangle, small backward triangle, and crown.
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of p for all the cases shown in the figures; this is also evident from Figures 11 and 12, where
the conductivities are normalized with respect to JA. Again, the agreement shown in
Figure 12 for corresponding forward and backward triangles is in accord with reverse
flow reciprocity.

For regularly shaped apertures such as the square, the results indicate that K
R
(u) is

periodic at high enough frequency, and that the magnitudes of successive maxima and
minima are effectively constant. For those apertures whose streamwise dimension decreases
continuously with distance from the line of symmetry (the circle and triangle), the magni-
tudes of successive maxima and minima decrease with increasing p. For the cross-shaped



Figure 8. Real part (top) and imaginary part (bottom) of the Rayleigh conductivity normalized by the square
root of the area for circle, square, cross, and crown apertures with flow on one side.

Figure 9. Real part (top) and imaginary part (bottom) of the Rayleigh conductivity normalized by the square
root of the area for the large and small, forward and backward facing triangle apertures with flow on one side.

Thick dashed lines represent results for the forward facing triangles.
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Figure 10. The Rayleigh conductivity for equal two-sided grazing flow past apertures with shapes: circle, square,
cross forward triangle, backward triangle, small forward triangle, small backward triangle and crown.

346 S. M. GRACE E¹ A¸.
aperture, which has two very different streamwise length scales, successive maxima and
minima exhibit two distinct values which recur alternately as the frequency increases. In the
case of the ‘‘crown’’ shaped aperture, there are two dominant length scales, which are
reflected in the two alternating sets of values for the maxima and minima, in addition
however, the magnitudes of the peaks gradually decrease with increasing p.

3.3. ONE-DIMENSIONAL APPROXIMATION TO THE APERTURE MOTION

Howe (1997b) has estimated the influence of mean flow on the conductivity of rectangular
apertures (with sides parallel to the mean flow direction) by neglecting the dependence of



Figure 11. Real part (top) and imaginary part (bottom) of real Rayleigh conductivity normalized by the square
root of the area for circle, square, cross, and crown apertures with equal flow on both faces: —— , circle; 2 ,

square; — — cross; — — —, crown.

Figure 12. Real part (top) and imaginary part (bottom) of the Rayleigh conductivity normalized by the square
root of the area for the large and small, forward and backward facing triangle apertures with equal flow on both

faces. Thick dashed lines represent results for the forward facing triangle.
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Figure 13. Rayleigh conductivity for a square aperture with one-sided and equal two-sided grazing flow
calculated with the three-dimensional numerical method (dotted line) and the approximate theory (solid line).

Figure 14. Rayleigh conductivity for one sided grazing flow past the crown shaped aperture. Comparison of
results for serrated edge at the leading edge (solid line) and serrated edge at the trailing edge (dots).
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the vortex sheet displacement on the spanwise coordinate x
3
. The integro-differential

equation (2.8) can then be simplified by explicitly performing the integration on the
right-hand side with respect to y

3
. When the equation is also integrated with respect to

x
3

over the span, the analog of equation (2.12) assumes the one-dimensional form
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are constants to be determined, and b is the span.
Equation (3.15) is solved by collocation; the values of j

1,2
are determined by imposing the

Kutta condition at the upstream edge X
1
"!1 as before, and the conductivity is

calculated from
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Predictions of K
R
(u) obtained in this way for a square aperture in one or two-sided

grazing flow are plotted as solid curves in Figure 13. The dotted curves in Figure 13
correspond to the numerical solution of the full three-dimensional equation of motion (2.8)
obtained with a discretization corresponding to 60 mesh elements in the streamwise
direction for the one-sided flow case and 70 for the two-sided flow case. It is clear from the
figure that the one-dimensional approximation produces a good prediction to the motion of
the vortex sheet in the mouth of the square aperture. The approximation does not work as
well for lower aspect ratio apertures nor for apertures with tapered spans.

4. REVERSE FLOW RECIPROCITY

Reverse flow reciprocity (Howe et al. 1996) requires that the Rayleigh conductivity at
a given frequency u be unchanged in value when the directions of the mean flows on both
sides of the wall are reversed. The theorem has been verified in Section 3 for forward and
backward facing triangular apertures.

More dramatic confirmation of the theorem is exhibited in Figure 14, where the conduc-
tivities for a square aperture with either a serrated leading or serrated trailing edge (the
‘‘crown’’) are seen to be identical. This conclusion may be very significant for the design of
flow control devices that depend on the use of serrations to ‘‘break up’’ an organized flow in
an attempt to minimize coherent generation of sound and vibration.

5. CONCLUSION

When a sound wave impinges on a wall aperture in the presence of high Reynolds number
flow, there is generally an exchange of energy between the sound and the flow brought
about by acoustically induced vortex shedding. For a small aperture, the motion in its
immediate neighborhood can be regarded as incompressible, and the interaction with the
sound is conveniently expressed in terms of the Rayleigh conductivity K .
R
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In this paper K
R
(u) has been computed for a variety of apertures in a wall of infinitesimal

thickness in the presence of high Reynolds number grazing flow. The shear layer in the
aperture is modelled by a linearly disturbed vortex sheet. For one-sided flow over apertures
with equal maximum streamwise dimension, the Strouhal number range in which energy in
extracted from the mean flow is found not to vary significantly with aperture shape. The
centre of this range corresponds approximately to the frequency of the lowest order
‘‘operating stage’’ of self-sustained (unforced) oscillations of the aperture shear layer, which
is therefore effectively independent of aperture shape.

Self-sustaining oscillations cannot occur in the ideal limit of a wall of zero thickness when
the flows are the same on both sides, although forced motion by an incident disturbance can
still induce vortex shedding and a positive or negative exchange of energy with the mean
flow. In such cases, K

R
(u) becomes essentially periodic when the Strouhal number exceeds

about 3, and the number of distinct values taken by the maxima or minima of the real and
imaginary parts of K

R
turns out to be equal to the number of distinct streamwise length

scales that characterize aperture geometry.
The reverse flow reciprocal theorem requires the value of K

R
(u) to be unchanged when

the mean flow directions of both sides of the wall are reversed. This is confirmed by our
computations, and is remarkable because the edges of the aperture at which vorticity is
generated and on which vorticity impinges are reversed in the reciprocal problem, and the
respective geometries of these cases can be markedly different.
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